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High-order-accurate methods for viscous flow problems have the potential to re-
duce the computational effort required for a given level of solution accuracy. The
state of the art in this area is more advanced for structured mesh methods and finite-
element methods than for unstructured mesh finite-volume methods. In this paper,
we present and analyze a new approach for high-order-accurate finite-volume dis-
cretization for diffusive fluxes that is based on the gradients computed during solution
reconstruction. Our analysis results show that our schemes based on linear and cubic
reconstruction can be reasonably expected to achieve second- and fourth-order accu-
racy in practice, respectively, while schemes based on quadratic reconstruction are
expected to be only second-order accurate in practice. Numerical experiments show
that in fact nominal accuracy is attained in all cases for two advection–diffusion prob-
lems, provided that curved boundaries are properly represented. To enforce boundary
conditions on curved boundaries, we introduce a technique for constraining the least-
squares reconstruction in boundary control volumes. Simply put, we require that the
reconstructed solution satisfy the boundary condition exactly at all boundary flux
integration points. Numerical experiments demonstrate the success of this approach,
both in the reconstruction results and in simulation results. c© 2002 Elsevier Science (USA)

Key Words: high-order accuracy; unstructured meshes; advection–diffusion equa-
tion; high-order reconstruction; boundary conditions; boundary constraints; Navier–
Stokes equations.

1. INTRODUCTION

High-order-accurate methods for viscous flow problems—methods of higher than second-
order accuracy—are being actively pursued in an effort to reduce computational effort for
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a given quality of solution. For example, in a recent comparative study, Zingg et al. showed
that high-order-accurate methods are indeed more efficient in obtaining accurate solutions
on structured meshes for compressible turbulent aerodynamic flows than are second-order
methods [18]. In a similar vein, Bassi and Rebay showed excellent accuracy for high-
order-accurate finite-element methods for compressible inviscid and laminar viscous flows,
although without detailed cost comparisons [5].

High-order-accurate method development for unstructured mesh finite-volume compu-
tations has historically focused on advective fluxes. This work dates back at least as far
as Barth and Frederickson’s work applying quadratic reconstruction techniques to the
Euler equations ([3, 4], the former perhaps being more widely available). Since then, there
have been advances in high-order-accurate unstructured ENO and weighted ENO schemes
(e.g., [1, 8, 9, 14, 15]). Most recently, a high-order compact unstructured mesh scheme has
been proposed for the Euler equations [2].

Development of high-order-accurate viscous flow methods has been slower. As an ex-
ample, recent structured mesh work with the well-established INS3D code uses third- and
fifth-order-accurate differencing for the convective terms, but only second-order-accurate
discretization of the viscous terms [12]. Unstructured mesh schemes often use a mixed for-
mulation, with a finite-volume scheme for the inviscid terms combined with a second-order-
accurate Galerkin finite-element approximation for the viscous terms (see, for example,
[3, 13]). Recently, Delanaye and co-workers used quadratic reconstruction to compute the
inviscid terms in the Navier–Stokes equations, combined with a different, linear reconstruc-
tion for the gradients needed in the viscous terms [7, 10]. In neither of these references,
however, do the authors provide accuracy analysis or careful convergence studies for the
viscous terms in their scheme.

Our long-term goal is to develop a reliable high-order-accurate discretization scheme
for viscous flows and other mathematically similar problems. The purpose of this pa-
per is to describe a new unstructured mesh finite-volume scheme for the advection–
diffusion equation and to present analysis and numerical experiments demonstrating that
the new scheme attains high-order accuracy. This is an extension and enhancement of
our previous work on the same topic [16, 17]. In particular, we present two significant
results.

1. A new approach for using data from a single-solution reconstruction to compute not
only advective fluxes but also diffusive fluxes (Section 2.3). While we focus on least-
squares reconstruction, our technique could be applied in combination with other recon-
struction schemes. Numerous previous authors have analyzed advective flux schemes, and
so we focus our analysis efforts on diffusive fluxes. We present analysis of the trunca-
tion error in applying our approach (with least-squares reconstruction) to the Laplacian
operator for both vertex-centered (Section 3.1) and cell-centered (Section 3.2) control
volumes.

2. A new approach to boundary condition enforcement. We add constraints to the least-
squares reconstruction in boundary control volumes so that the boundary conditions are
satisfied exactly at flux integration points on the boundary (Section 2.2). This approach is
flexible enough to be applied for vertex- or cell-centered control volumes, for all orders of
accuracy, and for straight or curved boundaries.

In Section 4 we present the results of several numerical experiments which demonstrate the
effectiveness of the innovations we propose.
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2. HIGH-ORDER-ACCURATE SOLUTION RECONSTRUCTION

AND FLUX INTEGRATION

In this section, we describe our approach to high-order-accurate solution reconstruc-
tion, boundary condition enforcement, and flux integration. We begin our discussion by
describing how we perform least-squares reconstruction in the interior of the mesh. Next,
we discuss how we enforce boundary conditions by imposing additional constraints on the
reconstruction in boundary control volumes. We close this section with a summary of how
we calculate both advective and diffusive fluxes, and how we integrate fluxes around control
volume boundaries.

2.1. Least-Squares Reconstruction for Interior Control Volumes

Our goal, regardless of whether we use cell-centered or vertex-centered control volumes,
is to replace the control volume averaged value of the solution �̄i with a Taylor expansion,
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where �i is the value of the reconstructed solution and ∂k+l�i

∂xk∂yl are its derivatives at the
reference point (xi , yi ) of control volume i . We choose the coefficients of the expansion
to conserve the mean value in the control volume and to minimize error in representing
smooth solutions. Once the reconstruction is known, values of the reconstructed solution
and its derivatives can be easily calculated anywhere within the control volume.

2.2.1. Conservation of the Mean

Conservation of the mean within a control volume requires that
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Expanding the left-hand side of this term by term, one can easily show (see, for
example, [15]) that

1

Ai

∫
Vi

�R
i d A =�|i + ∂�

∂x

∣∣∣∣
i

x̄i +∂�

∂y

∣∣∣∣
i
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where

xn ym
i ≡ 1
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m d A. (3)

In contrast to most previous work in least-squares reconstruction (e.g., [3, 15]), we will
include this mean constraint explicitly in the least-squares system rather than eliminating
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it analytically. For interior control volumes, analytic elimination of the mean constraint is
straightforward, but for boundary control volumes, where the solution must also be con-
strained to enforce boundary conditions (see Section 2.2), analytic elimination of the mean
constraint would be much more difficult. By including the mean constraint explicitly for
interior control volumes, we accept a small performance penalty in favor of code simpli-
fication. This penalty is in fact small: the cost of Gauss elimination for a single constraint
is approximately the same as applying a single Householder transform, so at most we
pay a penalty equivalent to adding one additional column to the least-squares problem. In
practice, this means that our scheme is comparable in efficiency to other least-squares recon-
struction schemes, especially for high-order-accurate reconstruction. Comparisons between
ENO schemes and least-squares schemes on unstructured meshes are absent from the liter-
ature, but we expect that the cost of our reconstruction scheme should be significantly less
than the cost of computing several (non-least-squares) reconstructions, then computing the
proper weights to use in combining them, as modern weighted ENO schemes do (see, for
example, [9]).

2.1.2. Accuracy for Smooth Functions

Accuracy of the reconstruction for smooth functions can be stated in two equivalent
ways. The reconstruction can be said to be k-exact, or (k + 1)-order accurate, if, when
reconstructing P(	x) ∈ {xm yn : m + n ≤ k},

�R
i (	x − 	xi ) ≡ P(	x). (4)

Equivalently, one can say that for any �(	x) that has been averaged over control volumes
and reconstructed,

�R
i (	x − 	xi ) =�(	x) +O(�xk+1). (5)

In practice, this accuracy requirement means that the modified Taylor series expansion of
�R

i given in Eq. (2) must be carried out through the kth derivatives.
To compute these derivatives, we seek to minimize the error in predicting the mean value

of the function for control volumes in the stencil {Vj }i . The minimum number of neighboring
control volumes in the reconstruction stencil is equal to the number of derivative terms to
be approximated. In accord with common practice, we choose to exceed that minimum to
give some freedom for the least-squares reconstruction, improving robustness. Specifically,
in practice we insist on three neighbors for second-order accuracy, nine for third order, and
fourteen for fourth order. Control volumes are added to the reconstruction stencil based on
thier topological proximity to the reconstruction control volume. All neighbors at a given
level are added at once. Figure 1 gives examples of stencils for both vertex- and cell-centered
control volumes in the interior of a mesh. Each figure shows the stencil for reconstruction in
the control volume labeled R; the numeric labels indicate the order of accuracy at which a
given control volume is added to the stencil. Note that the vertex-centered example does not
require any additional control volumes in the stencil for fourth-order (cubic) reconstruction
that are not already present for third-order (quadratic) reconstruction. At boundaries, stencils
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FIG. 1. Sample reconstruction stencils.

are constructed using the same principles, although more layers of neighbors are typically
required to get large enough stencils.

The mean value, for a single control volume Vj , of the reconstructed function �R
i is
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To avoid computing moments of each control volume in {Vj }i about vi , we replace x − xi

and y − yi with (x − x j ) + (x j − xi ) and (y − y j ) + (y j − yi ), respectively. Expanding and
integrating,
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The geometric terms in this equation are of the general form
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In these terms, we can write
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ŷi j

+ ∂2�

∂x2

∣∣∣∣
i

x̂2
i j

2
+ ∂2�

∂x∂y

∣∣∣∣
i

x̂ yi j + ∂2�

∂y2

∣∣∣∣
i

ŷ2
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Equation (6) evaluates the mean value of the reconstruction �R
i (	x − 	xi ) for a control

volume j, given the low-order derivatives of the solution at 	xi and low-order moments of
the control volumes. The difference between this prediction and the actual control volume
average �̄ j is easy to assess. The derivatives at 	xi are chosen to minimize this error over the
stencil {Vj }i in a least-squares sense. Geometric weights wi j are used to specify the relative
importance of good prediction for various control volumes in the stencil, with the weights
based on distance between control volume reference points. The resulting least-squares
problem is
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(7)

where N is the number of nearby control volumes in the stencil and the line separates
constraints from equations to be “solved” using least squares. The weights used are the
inverse of distance between control volume reference locations squared:

wi j = 1

|	x j − 	xi |2 . (8)

This weighting was introduced for use in unstructured mesh computational fluid dynamics
by Barth [3] and has the advantage of reducing the influence of data farther from the
reconstruction control volume, where neglected higher order terms will have the greatest
effect. Gauss elimination is applied for the constraint, replacing the first column of the left-
hand side with zeroes. The remaining least-squares problem can be solved for the derivatives
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of � by using any least-squares technique. We choose to use Householder transforms to
reduce the left-hand side matrix to upper triangular, because conditioning problems are
more severe with normal equation methods [11]. Finally, the constant term in the expansion,
�i , is evaluated during the back-substitution phase of the least-squares solution, using the
constraint equation and the derivatives.

2.2. Boundary Condition Enforcement Via Constrained
Least-Squares Reconstruction

Our boundary condition enforcement scheme is parsimonious, in the sense that boundary
conditions are enforced only at points where boundary data is actually used—the Gauss
integration points along the boundary. We can enforce Dirichlet, Neumann, and mixed
Dirichlet–Neumann boundary conditions by constraining the least-squares reconstruction
in control volumes adjacent to the boundary. More-complex boundary conditions must be
handled, at least in part, by careful definition of boundary fluxes.

2.2.1. Boundary Constraints for Dirichlet Boundary Conditions

Suppose that along part of the boundary ∂�1 the solution must satisfy a Dirichlet boundary
condition �(	x) = f1(	x). We enforce this at each Gauss integration point 	xg on the boundary
by requiring
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For each control volume adjacent to the boundary, one constraint is added to the least-
squares reconstruction problem for each boundary Gauss integration point. As an example,
consider the cell-centered control volume shown in Fig. 2. The boundary constraint (Eq. (9))
must be enforced at points a and b and the resulting equalities included in the reconstruction

FIG. 2. Cell-centered control volume at the boundary, including Gauss integration points.
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problem (Eq. (7)) to give
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There are three equality constraints on the reconstruction for this control volume—
conservation of the mean and two boundary constraints. Gauss elimination is used for
all constraint rows, including elimination from the least-squares rows of the problem;
with multiple constraints, pivoting is an essential adjunct to the Gauss elimination. The
remaining least-squares problem is again solved using Householder transforms to upper
triangularize the left-hand side, with back substitution including the constraint rows. This
gives a least-squares reconstruction that both conserves the mean and satisfies the boundary
conditions.

2.2.2. Boundary Constraints for Neumann Boundary Conditions

We apply Neumann boundary conditions in an analogous way. Along part of the boundary
∂�2 the solution must satisfy a Neumann boundary condition ∂�(	x)

∂n = f2(	x). We enforce
this at each Gauss integration point 	xg on the boundary by requiring
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where n̂ is the unit boundary normal. Implementation is completely analogous to the
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Dirichlet case in its approach, with the constrained least squares system now given by
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i1 wi1 x̂ yi1 wi1 ŷ2
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2.3. Flux Calculation and Integration

In the present context, we are solving the advection–diffusion equation in two dimensions,

∂�

∂t
+ ∂u�

∂x
+ ∂v�

∂y
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∂x2
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where the advection velocities u and v are known, possibly as functions of x and y. Using
Gauss’s theorem for fixed control volumes, we can write for control volume i(CVi )

d�̄i

dt
+

∫
∂CVi

 u� − � ∂�
∂x

v� − � ∂�
∂y

 · n̂ dl = 0.

This problem contains both advective fluxes (which require the value of the solution) and
diffusive fluxes (which require the gradient of the solution). At any point along the control
volume boundary, the reconstructed solution and gradient are double valued, because the
values from the two incident control volumes may be different. For advective fluxes, we
use an upwind flux approximation. For diffusive fluxes, we average the gradients computed
in each control volume at the boundary.

Having computed the fluxes, we integrate around each control volume by using Gauss
quadrature. In keeping with standard practice, we use one quadrature point per segment
with linear reconstruction, and two quadrature points per segment for quadratic and cubic



738 OLLIVIER-GOOCH AND VAN ALTENA

FIG. 3. Gauss quadrature for interior control volumes.

reconstruction. This is shown schematically for interior control volumes in Fig. 3, including
surface normals scaled by integration weights.

Flux integration on the domain boundary is done similarly. Gauss quadrature points must
be placed precisely on the curved boundary and spaced according to arclength rather than
straight-line distance to achieve the nominal accuracy for schemes of order higher than two,
as the distance between points on the curved boundary and on the straight-line segment
between two boundary vertices is O(�s2). In general, the boundary representation must be
at least as accurate as the desired flux integral accuracy. For example, for a fourth-order-
accurate solution, a curved boundary must be represented by at least a cubic.

3. ACCURACY ANALYSIS

We have described an approach for calculating and integrating diffusive fluxes with the
goal of high-order accuracy. It is well known that a p-order-accurate reconstruction of a
solution from control volume averages will produce p-order-accurate flux calculations for
fluxes that require the solution but not the gradient. However, the same p-order-accurate
reconstruction will produce only (p − 1)-order-accurate gradients, which should in turn
lead to (p − 1)-order-accurate flux evaluation and flux integrals. To shed light on this issue,
we now present analysis of flux integrals for the Laplace equation on uniform triangular
meshes. In doing so, we proceed much as we would in analyzing a structured mesh scheme
using uniform Cartesian meshes: we analyze the simplest case and perform numerical
experiments to determine whether our analysis also predicts correctly results on more
general meshes. The numerical experiments are necessary because we have no way to
predict how our schemes will behave for nonuniform triangular meshes. In our analysis,
we will examine both vertex- and cell-centered control volumes and linear, quadratic, and
cubic reconstructions.

3.1. Vertex-Centered Control Volumes

For analysis, a coordinate and labeling system are created for a uniform, vertex-centered,
equilateral triangular mesh, as shown in Fig. 4. Each triangle edge has length h. We will
be computing analytically the flux integral for control volume A. The neighbors of A can
be classified into genuses based on their position relative to A without regard to rotation.
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FIG. 4. Coordinates and vertex labels for vertex-centered analysis.

Because of symmetry, all control volumes of the same genus have the same coefficient in
the flux integral. Note that the index coordinates (i, j) do not run parallel to the Cartesian
coordinates (x, y); the i = 0 line runs from the bottom left to top right corners of the
hexagonal mesh fragment shown. This choice of coordinates allows an easy mapping from
(i, j) to (x, y) coordinates.

The reconstruction scheme requires control volume moments. For the vertex-centered
scheme, the control volumes are all identical hexagons (shown as a dotted outline near the
left side of Fig. 4), and moments may be found by analytic integration. The low-degree
nonzero control volume moments are

x2 = y2 = 5

72
h2,

x4 = y4 = 7

720
h4, x2 y2 = 7

2160
h4,

x6 = 3

1792
h6, x4 y2 = 31

80640
h6,

x2 y4 = 73

241920
h6, y6 = 85

48384
h6.

(12)

With moments in hand, we proceed to reconstruct the solution in each control volume by
solving the appropriate subset of the least-squares problem of Eq. (7) and compute fluxes and
integrate them, as described in Section 2.3. The analysis technique is identical regardless of
order of accuracy, with differences only in the size of the reconstruction stencil. In the next
subsection, we give detailed analysis for the case of linear reconstruction to demonstrate the
technique. For the remaining cases—quadratic reconstruction using only first neighbors;
quadratic reconstruction with a broader, more realistic stencil; and cubic reconstruction—
we will summarize and discuss results.
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3.1.1. Linear Reconstruction

For linear reconstruction, we prefer at least three neighbors in the reconstruction stencil;
for an equilateral mesh, first neighbors are more than sufficient. All geometric weights are
equal to 1/h2. The solution of the least-squares problem in control volume (i, j) is

 �

�x

�y

 =


�̄i, j

2(�̄i+1, j − �̄i−1, j ) + �̄i, j+1 + �̄i+1, j−1 − �̄i, j−1 − �̄i−1, j+1

6h√
3(�̄i, j+1 + �̄i−1, j+1 − �̄i+1, j−1 − �̄i, j−1)

6h

. (13)

We compute the flux integral as described in Section 2.3; in this case, the fluxes are especially
easy to calculate because there are no second derivatives in the reconstruction. One-point
Gauss integration is sufficient in this case. After simplification, we obtain an expression for
the computed Laplacian in control volume (0, 0) ∇̃2�0,0 in terms of control volume averages,

∇̃2�0,0 = −6 �̄ A − ∑
�̄B + ∑

�̄C + ∑
�̄D

9h2
, (14)

where, for example,
∑

�̄B is the sum of the average solution for all the control volumes
labeled B. We can expand the control volume averages in terms of derivatives of the under-
lying smooth solution � at the origin by using Eq. (6) and find the difference between this
computed Laplacian ∇̃2�0,0 and the control volume average of the actual Laplacian ∇2�0,0

1:

∇̃2�0,0 − ∇2�0,0 = h2

4

(
∂4�

∂x4
+ 2

∂4�

∂x2∂y2
+ ∂4�

∂y4

)
+ O(h4). (15)

Clearly, this scheme for calculating the Laplacian is second-order accurate for equilateral
meshes and vertex-centered control volumes, despite the fact that the first derivatives in the
reconstruction can easily be shown to be only first-order accurate.

3.1.2. Results for Other Cases

For the linear reconstruction case, we required only first neighbors for the reconstruction
and obtained, perhaps serendipitously, second-order accuracy. The quadratic reconstruction
cases (see Table I) also give second-order-accurate flux integrals, which is consistent with
the second-order accuracy of the computed fluxes. The compact (first neighbors only) recon-
struction stencil is an unrealistic choice in practice; least-squares reconstruction schemes
are typically implemented with more looseness in the reconstruction. Perhaps because of the
greater degree of approximation in the reconstruction, the normal (first and second neigh-
bors) version of the reconstruction stencil gives a less accurate calculation of the Laplacian
than does the compact stencil.

With cubic reconstruction, we must use both first and second neighbors in the reconstruc-
tion. The resulting flux integral is fourth-order accurate, which is one order better than the
computed fluxes.

In summary, reconstruction schemes that give even-order accuracy for advective-type
fluxes (linear and cubic) provide the same order of accuracy with our Laplacian scheme.

1Note that it is critically important in this and all following cases to include the high-order terms in the average
of the Laplacian, by applying Eq. 6, rather than using simply ∇2�(0, 0).
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TABLE I

Stencils and Truncation Error for Laplacian on a Vertex-Centered Mesha

Recon. type

Linear Compact quadratic Normal quadratic Cubic

Recon. stencil B(1/h2) B(1/h2) B(1/h2) B(1/h2)
(weight) C(1/4h2) C(1/4h2)

D(1/3h2) D(1/3h2)

Leading T. E.
h2

4
∇2∇2�

h2

16
∇2∇2�

53h2

304
∇2∇2� − 3137h4

76032
∇2∇2∇2�

− 439h4

380160
A(�)

Multiplier
1

9h2

1

18h2

1

12312h2

1

35640h2

Genus A (1) −6 −66 −22284 −78894

Genus B (6) −1 10 1799 4976

Genus C (6) 1 −1 674 4349

Genus D (6) 1 2 1212 6006

Genus E (6) — — −63 −678

Genus F (12) — — 46 −752

a A(�) = ∂6�

∂x6 − 15 ∂6�

∂x4∂y2 + 15 ∂6�

∂x2∂y4 − ∂6�

∂y6 .

Reconstructions that give odd-order accuracy for advective-type fluxes (quadratic) are one
order less accurate in computing the Laplacian with our scheme. We postulate that similar
behavior will continue for higher orders of accuracy as well.

3.2. Cell-Centered Control Volumes

For cell-centered meshes, the analysis proceeds in much the same way as for the vertex-
centered case. A coordinate and labeling system are created for a uniform, equilateral
triangular mesh, as shown in Fig. 5. Here, there is the additional complication that not
all control volumes are identical; all moments for monomials of the form x2n y2m+1 have

FIG. 5. Coordinates and cell labels for cell-centered analysis.
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values that are equal in magnitude but opposite in sign for up-pointing versus down-pointing
triangles. We label each parallelogram with sides parallel to the i and j axes with a single
i, j pair and distinguish these triangles by their orientation (� for up pointing, ∇ for down
pointing). Each triangle edge has length h, and again each control volume is marked in
the figure with its genus. Once again, the index coordinates (i, j) do not run parallel to the
Cartesian coordinates (x, y); the i = 0 line runs from the bottom left to top right corners of
the mesh fragment shown.

The control volume moments are again found by analytic integration. For up-pointing
triangles, the low-degree nonzero control volume moments are

x2 = y2 = 1

24
h2,

x2 y = −
√

3

360
h3, y3 =

√
3

360
h3,

x4 = y4 = 1

240
h4, x2 y2 = 1

720
h4,

x4 y = −
√

3

2520
h5, x2 y3 = −

√
3

7560
h5, y5 =

√
3

1512
h5,

x6 = 1

1792
h6, x4 y2 = 13

80640
h6,

x2 y4 = 19

241920
h6, y6 = 31

48384
h6.

(16)

For down-pointing cells, the following moments have the opposite sign to those shown:
x2 y, y3, x4 y, x2 y3, and y5. Given these moments, we proceed as before with reconstruc-
tion, flux computation, and flux integration. In the next subsection, we give detailed anal-
ysis for the case of liner reconstruction to demonstrate the technique. For the remaining
cases—quadratic reconstruction; cubic reconstruction with a restricted stencil; and cubic
reconstruction with a broader, more realistic stencil—we will summarize and discuss results.

3.2.1. Linear Reconstruction

For linear reconstruction, first neighbors are again sufficient for the reconstruction. All
geometric weights are equal to 3/h2. The solution of the least-squares problem in control
volume (i, j, �) is

 �

�x

�y

 =


�̄i, j,�

�̄i, j,∇ − �̄i−1, j,∇
h

√
3(�̄i, j,∇ + �̄i−1, j,∇ − 2�̄i, j−1,∇ )

3h

. (17)

The result for down-pointing triangles is analogous. We compute the flux integral as de-
scribed in Section 2.3. Again, one-point Gauss integration is sufficient in this case. After
simplification, we obtain an expression for the computed Laplacian in control volume
(0, 0, �) ∇̃2�0,0 in terms of control volume averages:

∇̃2�0,0 = −6 �̄P + ∑
�̄R

3
2 h2

. (18)
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TABLE II

Stencils and Truncation Error for Laplacian on a Cell-Centered Mesha

Recon. type

Linear Quadratic Compact cubic Normal cubic

Recon. stencil (weight) Q(3/h2) Q(3/h2) Q(3/h2) Q(3/h2)
R(1/h2) R(1/h2) R(1/h2)

S(3/4h2)
T(3/7h2)

Leading T. E.
h2

16
∇2∇2�

h
√

3

45
B(�) − h3

√
3

240
∇2B(�) − 1.629h3

1000
∇2B(�)

+ 7h2

144
∇2∇2� − h2

288
∇2∇2∇2� − 6.603h4

1000
∇2∇2∇2�

+ h4

5760
A(�) − 0.403h4

1000
A(�)

Equivalent Laplacian stencil

Multiplier
2

3h2

4

9h2

1

6h2

1

h2

Genus P (1) −6 −15 −42 −6.1150
Genus Q (3) 0 3 4 0.6985
Genus R (6) 1 1 7 0.6371
Genus S (6) — — −1 0.05565
Genus T (3) — — −2 0.1188
Genus U (6) — — — −0.04919
Genus V (3) — — — −0.01368
Genus W (3) — — — −0.05244

a A(�) ≡ ∂6�

∂x6 − 15 ∂6�

∂x4∂y2 + 15 ∂6�

∂x2∂y4 − ∂6�

∂y6 and B(�) ≡ 3 ∂3�

∂x2∂y
− ∂3�

∂y3 .

Note that only up-pointing triangles are used in this computation, admitting the possibility
of the analog to structured mesh odd-even solution decoupling for uniform meshes.2

As with the vertex-centered analysis, we replace control volume averages with their
expansions (from Eq. (6)) and simplify to find the error in the computed Laplacian:

∇̃2�0,0 − ∇2�0,0 = h2

16

(
∂4�

∂x4
+ 2

∂4�

∂x2∂y2
+ ∂4�

∂y4

)
+O(h4). (19)

Clearly, this scheme for calculating the Laplacian is second-order accurate for equilateral
meshes and cell-centered control volumes, despite the fact that the first derivatives in the
reconstruction can easily be shown to be only first-order accurate.

3.2.2. Results for Other Cases

For the quadratic reconstruction case, we require an additional level of neighbors for
reconstruction. With inverse-distance-squared weighting, the computed Laplacian is espe-
cially simple, as seen in Table II. As we expect given the results for vertex-centered control
volumes, the computed Laplacian is not third-order accurate. More surprising is the fact
that the Laplacian is in fact only first-order accurate for this case! Note that, even without

2 In practice, we have observed no difficulties with decoupling for advection–diffusion problems.
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the troublesome first-order term, the truncation error for this approach is only slightly lower
than for the linear reconstruction scheme.

The first-order error term is a combination of third derivatives that cannot be computed
independently for any single genus of control volumes. Consider, for example, the control
volumes of genus Q. Symmetry considerations require that each of these control volumes
have the same weight in the Laplacian stencil. Unfortunately, the location of these control
volumes is such that the x2 y and y3 terms in the Taylor expansions of their control volume
averages do not cancel. Making matters worse, the x2 y and y3 moments of all the cell-
centered control volumes ae nonzero. As numerical experiments in Section 4 will show,
this is a case where actual performance exceeds analytic expectations, in part because
realistic meshes do not have the fatal symmetry which causes this problem analytically.

With both first and second neighbors in the reconstruction stencil, we have precisely nine
neighbors, which is the absolute minimum for cubic recontruction. For this case (“cubic
compact” in Table II), the computed Laplacian is third-order accurate, which is all that we
have any right to expect, given the accuracy of the first derivatives from the reconstruction.
However, the leading-order term in the truncation error contains the Laplacian of the same
term that was troublesome for the quadratic reconstruction case. Again, the numerical
experiments will show that this term is not a factor in practice.

The stencil we would normally choose for cubic reconstruction in control volume P
would include its first, second, and third cell neighbors (genus Q, R, S, and T ), for a total
of 18 neighbors; geometric weights for the reconstruction are shown in Table II (“normal
cubic”). This case echoes the cubic compact case; the third-order error term has a slightly
smaller constant here, although the fourth-order terms are somewhat larger.3

In summary, our analysis shown that the perfect, uniform mesh allows an ambiguity
in calculating certain derivatives using clusters of cells of the same genus; this ambiguity
appears in the analytic results as truncation error terms that do not meet our expectations
for order of accuracy. Numerical experiments, presented in the next section, will show that
for normal triangular meshes, the computed results exceed analytic expectations. Beyond
this somewhat troubling quirk, we have shown that reconstruction schemes that would give
even-order accuracy for advective-type fluxes (linear and cubic) provide the same order
of accuracy with our Laplacian scheme. Reconstruction that gives odd-order accuracy for
advective-type fluxes (quadratic) is one order less accurate in computing the Laplacian with
our scheme. Again, we postulate that similar behavior will continue for higher orders of
accuracy as well.

3.3. Discussion

For both vertex-centered and cell-centered control volumes, common practice (e.g.,
Galerkin finite-element or Green–Gauss finite-volume discretizations) for uniform trian-
gular meshes results in simpler stencils than those given by our approach. In particular, for
vertex-centered control volumes, the Galerkin finite-element discretization of the Laplacian
can be written in our notation as

∇̃2�0,0 = 2

3

−6 �̄ A + ∑
�̄B

h2
. (20)

3 For this case, the fractional representations of the stencil and errors, though computed analytically, are far too
cumbersome to be of even illustrative use, so decimal values are used instead.
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For this stencil, the difference between this computed Laplacian ∇̃2�0,0 and the control

volume average of the actual Laplacian ∇2�0,0 is

∇̃2�0,0 − ∇2�0,0 = h2

16

(
∂4�

∂x4
+ 2

∂4�

∂x2 ∂y2
+ ∂4�

∂y4

)
+O(h4). (21)

This truncation error is smaller by a factor of four than our result. The stencil is also
positive (and remains so for nonuniform meshes) and more compact than ours. However,
our approach requires less computation for problems with both advection and diffusion,
because the gradient is available for free following reconstruction. On balance, either scheme
is likely to work reasonably well in practice.

For cell-centered control volumes, gradients can be calculated by using Green–Gauss
integration around a diamond connecting the end points of an edge and the centroids of
the cells that share the edge. The solution at the end points of the edge can be estimated
by averaging data in incident control volumes. For a uniform mesh, the resulting Laplacian
stencil requiring only the first neighbor control volumes and can be written as

∇̃2�0,0 = 4
−3�̄P + ∑

�̄Q

h2
. (22)

The error in the computed Laplacian for this case is

∇̃2�0,0 − ∇2�0,0 = h
√

3

15

(
3

∂3�

∂x2∂y
− ∂3�

∂y3

)
+ h2

48

(
∂4�

∂x4
+ 2

∂4�

∂x2∂y2
+ ∂4�

∂y4

)
+O(h4).

(23)

This stencil suffers from the now-familiar mixed third-derivative problem in its simplest
form. In addition, the three neighboring control volumes used in this stencil do not give
enough degrees of freedom to compute even a zero-order-accurate Laplacian for general
meshes. Consequently, our approach is superior, even though it allows the possibility of
solution decoupling in some circumstances.

4. NUMERICAL EXPERIMENTS

In this section, we present several numerical experiments with the goals of confirming the
analytical results of the previous section, of exploring whether the odd-derivative error terms
present for equilateral meshes affect computational results in practice, and of demonstrating
the importance of correct treatment of curved boundaries. All our results use the approach
described in Section 2.1 to determine reconstruction stencils and, therefore, correspond
more closely to the “normal” than the “compact” cases analyzed in Section 3.

The meshes for these test cases were generated using a guaranteed-quality meshing
scheme [6]; all triangles had angles between 30 and 120 degrees. While these are excellent
meshes, they are far from being uniform and equilateral, providing a realistic test of our
schemes for practical meshes. For the advection–diffusion cases, steady solutions for the un-
steady problem were obtained by using Runge–Kutta time advance with local time stepping.
Clearly this is not the most efficient approach because of the severe time-step limitations
on explicit methods for the advection–diffusion equation. However, for our purposes—
investigating the accuracy of the spatial discretization scheme—efficiency was not an issue,
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and convergence was not difficult to achieve. We computed error in each control volume by
comparing the computed solution with the average of the exact solution; the average was
calculated by using a sixth-order-accurate Gauss quadrature.

4.1. Flux Integral Tests for the Laplacian

We begin with an experiment designed to confirm that the accuracy of flux integrals
computed using our scheme for the Laplacian is consistent with the analytic results of
Section 3. For both vertex-centered and cell-centered control volumes, we computed flux
integrals on a sequence of meshes in a unit square. The initial solution data was

�(x, y) = sin(�x) sin(�y),

implying homogeneous Dirichlet boundary conditions on the solution. In each case, the
flux integrals were computed for all control volumes and compared with the average of the
Laplacian of � (where ∇2� = −2�2�); the results are presented in Fig. 6. For both cell-
and vertex-centered schemes, the accuracy of the flux integrals approximately matches the
accuracy of the reconstruction, even in the L∞ norm. This result exceeds the expectations
of the analysis of Section 3. This result is perhaps not too surprising for the linear and cubic
reconstruction cell-centered schemes, whose analytic accuracy was reduced by a symmetry

FIG. 6. Results for Laplacian flux integral.
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in the uniform mesh used for the analysis; these cases appear to benefit from less than
completely regular meshes.

4.2. Advection–Diffusion in a Rectangular Channel

This case solves the two-dimensional advection–diffusion equation, Eq. (11), in
a rectangular channel of length L = 3 in the x-direction and unit height in the
y-direction, with constant velocity of (u, v) = (u0, 0) and a diffusion coefficient of � =
0.01.4 The boundary conditions for this case are

T (x, 0) = T (x, 1) = 0,

T (0, y) = sin(�y),

∂T (L , y)

∂x
= 0.

The exact solution for this problem is

�(x, y) = sin(�y)

[
r2 exp(r1x + r2L) − r1 exp(r1L + r2x)

r2 exp(r2L) − r1 exp(r1L)

]
,

where

r1,2 = u0

2�
±

√
u2

0

4�2
+ �2.

Solutions for this problem were computed on three meshes using linear, quadratic, and cubic
reconstructions. Figure 7 summarizes the results for this test case; the tabulated values are
norms based on the two finest meshes for each case. As the plots indicate, the convergence
of the computed solutions to the exact solution with mesh refinement is not entirely smooth.
Nevertheless, in the L1 norm, five out of six combinations reach the order of accuracy of
their reconstruction, an indication of the de facto behavior of the discretization scheme. This
result is a pleasant surprise for both quadratic schemes, where analysis of the diffusive terms
suggested that second-order accuracy was the best we could expect. While it may be that
further mesh refinement would eventually reveal the presence of a second-order truncation
error term with a very small coefficient for these two cases, on the practical level we are
content, as the standard of accuracy achieved in these tests is tighter than typically needed in
applications. The one exception to the otherwise excellent behavior of these schemes is the
cell-centered cubic reconstruction scheme, which fails to achieve fourth-order convergence
for this test case; a handful of cells with comparatively large error persist at the outflow
boundary.

4.3. Advection–Diffusion in an Annulus

Now we turn our attention to a case with curved boundaries. In this case, the domain is
an annular segment, as shown in Fig. 8. At the inflow, the boundary condition is given by
T (r, � = 0) = sin ( � ln r

ln 2 ), and the velocity is (vr , v�) = (0, u0/r ); other boundary conditions

4 This diffusion coefficient is the equivalent of 1/Re for a viscous flow.
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FIG. 7. Results for rectangular channel test case.

FIG. 8. Geometry and boundary conditions for annular test case. The inflow boundary condition is given in
the text.
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are shown in Fig. 8. With this data, the advection–diffusion equation in cylindrical coordi-
nates is separable, and the solution is given by

T (r, �) = sin

(
� ln r

ln 2

)
s1 exp

(
s1

�
2 + s2�

) − s2 exp
(
s2

�
2 + s1�

)
s1 exp

(
s1

�
2

) − s2 exp
(
s2

�
2

) ,

where

s1,2 =
u0 ±

√
u2

0 +
(

2��
ln 2

)2

2�
.

Note that although the solution is given in terms of r and �, we solved the problem numer-
ically by using the Cartesian advection–diffusion equation. For this problem, the boundary
shape is treated exactly, but the use of cubic splines to describe the boundary would not
affect the order of accuracy of the solution.

As discussed in Sections 2.2 and 2.3, care must be taken with boundary condition en-
forcement in the presence of curved boundaries. Figure 9 shows the results obtained for
this case when boundaries are treated correctly. In all cases, despite some noise in the er-
ror norm data, the nominal order of accuracy of the scheme was achieved, except that the
maximum error for the vertex-centered, cubic reconstruction scheme is somewhat poorly
behaved. An examination of the error on the finest mesh for this scheme reveals that the
only errors of consequence occur at the outflow boundary, although there is no obvious

FIG. 9. Results for annular test case.
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mesh anomaly that might cause discretization problems. Note that the maximum error is
much better behaved asymptotically than for the straight channel case, essentially ruling
out a blanket problem with Neumann boundary conditions in our scheme. Consistent with
this inference, a postcheck of solution values at the boundary confirms that the solution
precisely satisfies the boundary conditions at the Gauss quadrature points and converges to
zero at other points on the boundary at the same rate as the truncation error decreases.

We now examine the difficulties which arise when the curved boundaries of the computa-
tional domain are approximated by straight-line segments between vertices. Geometrically,
we know that the difference in location between the curved boundary and the straight-line
segments will be O(�2), where � is a typical boundary edge length. This implies that
boundary conditions will be enforced at points that differ by O(�2) from the correct loca-
tions and that second-order errors in the solution should arise. This is precisely the effect
observed in numerical experiments, as illustrated in Fig. 10, which clearly illustrates the

FIG. 10. Errors induced by treating curved boundaries as straight. (Error maps shaded with same scale.)



A HIGH-ORDER UNSTRUCTURED ADVECTION–DIFFUSION 751

general result that none of the high-order schemes achieve their nominal order of accuracy
with straight boundaries, even in the L1 norm. Also, none of the high-order schemes achieve
more than second-order accuracy in the L2 norm, and for some schemes the L∞ norm of
the error behaves as first-order accurate or worse.

Simply reading a set of boundary points from a file is clearly insufficient to achieve
high-order accuracy. The implication—which applies for high-order-accurate schemes
generally—is that boundary information must be available to the solver for preprocess-
ing control volume moments and boundary integration data. Whether that data is read or
recovered from boundary points is immaterial, provided that the shape of the boundary used
in preprocessing is at least as accurate as the desired discretization accuracy.

5. CONCLUSIONS

We have described a new scheme for high-order-accurate solution of the advection–
diffusion equation using reconstruction. Our discussion focused on least-squares recon-
struction; other reconstruction techniques, including ENO/WENO schemes, should work
as well, although our analysis would not be directly applicable for those cases. We have also
presented accuracy analysis of our scheme applied to the Laplacian operator on a uniform,
equilateral triangular mesh, with the following conclusions.

1. Analytically, the full reconstruction order of accuracy was demonstrated for vertex-
and cell-centered schemes based on linear reconstruction (second order) and for the vertex-
centered cubic reconstruction scheme (fourth order).

2. For both vertex- and cell-centered schemes, the quadratic reconstruction variants show,
under analysis, a second-order term in their truncation error, whereas the reconstructed
solution is third-order accurate.

3. Finally, the quadratic and cubic reconstruction cell-centered schemes have leading-
order-error terms (first and third order, respectively) that are associated with degeneracies
in the reconstruction. This degeneracy occurs because some pairs of terms in a Taylor series
expansion of the solution cannot be distinguished from one another by symmetric stencils
on a uniform, triangular mesh.

We also presented a new approach for boundary condition enforcement. Boundary condi-
tions are enforced at boundary flux integration points by constraining the reconstruction in
boundary control volumes to precisely match those conditions. This approach was used for
all examples in the paper and proven to work well.

Finally, we presented the results of several numerical experiments. These experiments
show that our schemes appear to perform better in practice than the analysis suggests.
In the case of the high-order cell-centered schemes, the degenerate terms in the Tay-
lor series expansion are no longer degenerate with an irregular mesh, so that result is
not unexpected. The quadratic schemes outperform analytic predictions to achieve third-
order accuracy, at least to the error levels considered here. Finally, the numerical ex-
periments illustrated the proper behavior of the boundary constraints we impose during
reconstruction.

Our next step in this research is to optimize the convergence behavior of our schemes
as applied to the Navier–Stokes equations to enable efficiency comparisons of schemes of
different orders of accuracy at the same error level.
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